Rgo functionalized ZnO–TiO core-shell flower-like architectures for visible light photocatalysis
Catalysts, ISSN: 2073-4344, Vol: 11, Issue: 3, Page: 1-13
2021
- 17Citations
- 21Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Core-shell heterostructures with a complex, flower-like morphology, comprising a ZnO core and a TiO shell decorated with reduced graphene oxide (rGO) sheets by hydrothermal wrapping, are reported to extend the absorption properties of the semiconductors toward the visible light range. The ternary photocatalysts were characterized by X-ray diffraction, field emission scanning electron microscopy, Raman spectroscopy, diffuse reflectance UV–Vis, and attenuated total reflectance-Fourier transform infrared spectroscopy. Its photocatalytic performance was evaluated under visible light irradiation using methylene blue dye as a model pollutant. The rGO-modified ZnO–TiO photocatalyst exhibited superior photoactivity compared to that of the parent ZnO–TiO core-shell structures, which was dependent on its graphene content. The enhanced photocatalytic response was attributed to the higher absorption in the visible light range, as well as the pronounced electron and hole separation in the ternary system.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know