Heterocycles by Consecutive Multicomponent Syntheses via Catalytically Generated Alkynoyl Intermediates
Catalysts, ISSN: 2073-4344, Vol: 12, Issue: 1
2022
- 16Citations
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Multicomponent processes are beneficial tools for the synthesis of heterocycles. As densely substituted bifunctional electrophiles, ynones are essential intermediates by applying cyclocondensations or cycloadditions in numerous heterocycle syntheses. The respective alkynoyl intermediates are generally accessible by palladium-, copper-and palladium/copper-catalyzed alkynylation. In turn, the mild reaction conditions allow for a fast and versatile entry to functional heterocycles in the sense of consecutive multicomponent processes. This review collates and presents recent advances in accessing thirteen heterocycle classes and their applications by virtue of catalytic alkynoyl generation in diversity-oriented multicomponent syntheses in a one-pot fashion.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know