Active and stable methane oxidation nano-catalyst with highly-ionized palladium species prepared by solution combustion synthesis
Catalysts, ISSN: 2073-4344, Vol: 8, Issue: 2
2018
- 16Citations
- 28Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We report on the synthesis and testing of active and stable nano-catalysts for methane oxidation. The nano-catalyst was palladium/ceria supported on alumina prepared via a one-step solution-combustion synthesis (SCS) method. As confirmed by X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HTEM), SCS preparative methodology resulted in segregating both Pd and Ce on the surface of the AlO support. Furthermore, HTEM showed that bigger Pd particles (5 nm and more) were surrounded by CeO, resembling a core shell structure, while smaller Pd particles (1 nm and less) were not associated with CeO. The intimate Pd-CeO attachment resulted in insertion of Pd ions into the ceria lattice, and associated with the reduction of Ceinto Ce ions; consequently, the formation of oxygen vacancies. XPS showed also that Pd had three oxidation states corresponding to Pd0, Pd due to PdO, and highly ionized Pd ions (Pd) which might originate from the insertion of Pd ions into the ceria lattice. The formation of intrinsic Ce ions, highly ionized (Pd2+ species inserted into the lattice of CeO) Pd ions (Pd) and oxygen vacancies is suggested to play a major role in the unique catalytic activity. The results indicated that the Pd-SCS nano-catalysts were exceptionally more active and stable than conventional catalysts. Under similar reaction conditions, the methane combustion rate over the SCS catalyst was ~18 times greater than that of conventional catalysts. Full methane conversions over the SCS catalysts occurred at around 400 °C but were not shown at all with conventional catalysts. In addition, contrary to the conventional catalysts, the SCS catalysts exhibited superior activity with no sign of deactivation in the temperature range between ~400 and 800 °C.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know