Advanced Refinement of Geopolymer Composites for Enhanced 3D Printing via In-Depth Rheological Insights
Ceramics, ISSN: 2571-6131, Vol: 7, Issue: 4, Page: 1316-1339
2024
- 2Citations
- 5Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The advancement of 3D printing technology has been remarkable, yet the quality of printed prototypes heavily relies on the rheological behavior of the materials used. This study focuses on optimizing geopolymer-based composite formulas to achieve high-quality 3D printing, with particular attention given to rheological analysis. Three metakaolins, Argical M1200s, Metamax, and Tempozz M88, were used as alumino-silicate precursors for the preparation of the geopolymer binders. Rheological studies were conducted on viscosity, shear stress, and responses to oscillations in amplitude and frequency. The Tempozz M88-based binder was identified as the most effective for the extrusion due to its optimal rheological properties. Subsequently, the study investigated the influence of the amount, up to 55%, and morphology of the fillers, comprising feldspar and wollastonite, on the rheology of the pastes. Also, the addition of Xanthan gum, a gelling agent in the geopolymer paste, was analyzed, revealing improved extrusion quality and more stable bead structures. Finally, a comprehensive comparison was carried out between two formulations chosen according to rheological observations, utilizing image sequences captured during 3D printing. This comparison highlighted the formulation that ensures structural stability, design accuracy, and minimized sagging. This study underscores the significance of geopolymer formula optimization, leveraging rheology as a pivotal tool to enhance 3D printing quality, thereby facilitating more precise and reliable applications of additive manufacturing.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know