A Methodology for Bridging the Gap between Regional- and City-Scale Climate Simulations for the Urban Thermal Environment
Climate, ISSN: 2225-1154, Vol: 10, Issue: 7
2022
- 2Citations
- 15Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent Blog
Climate, Vol. 10, Pages 106: A Methodology for Bridging the Gap between Regional- and City-Scale Climate Simulations for the Urban Thermal Environment
Climate, Vol. 10, Pages 106: A Methodology for Bridging the Gap between Regional- and City-Scale Climate Simulations for the Urban Thermal Environment Climate doi: 10.3390/cli10070106
Article Description
The main objective of this study is to bridge the gap between regional- and city-scale climate simulations, with the focus given to the thermal environment. A dynamic-statistical downscaling methodology for defining daily maximum (T) and minimum (T) temperatures is developed based on artificial neural networks (ANNs) and multiple linear regression models (MLRs). The approach involves the use of simulations from two EURO-CORDEX regional climate models (RCMs) (at approximately 12 km × 12 km) that are further downscaled to a finer resolution (1 km × 1 km). A feature selection methodology is applied to select the optimum subset of parameters for training the machine learning models. The downscaling methodology is initially applied to two RCMs, driven by the ERA-Interim reanalysis (2008–2011) and high-resolution urban climate model simulations (UrbClims). The performance of the relationships is validated and found to successfully simulate the spatiotemporal distribution of T and T over Athens. Finally, the relationships that were extracted by the models are further used to quantify changes for T and T in high resolution, between the historical period (1971–2000) and mid-century (2041–2071) climate projections for two different representative concentration pathways (RCP4.5 and RCP8.5). Based on the results, both mean T and T are estimated to increase by 1.7 °C and 1.5 °C for RCP4.5 and 2.3 °C and 2.1 °C for RCP8.5, respectively, with distinct spatiotemporal patterns over the study area.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know