Potential for more sustainable energy usage in the postharvest handling of horticultural produce through management of ethylene
Climate, ISSN: 2225-1154, Vol: 9, Issue: 10
2021
- 6Citations
- 22Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
The perishable nature of fruit and vegetables requires some technological intervention to maintain quality during handling and marketing. The technology of choice for many years has been use of low temperatures as it is effective in reducing metabolism and hence extend postharvest life. However, refrigerated storage is energy intensive and the growing urgency to reduce international greenhouse gas emissions has created a need for technologies that are more environmentally sustainable but still acceptable to consumers. Ethylene is well known to promote ripening and senes-cence of fruit and vegetables. This presentation will review the existing data that support the potential for managing the concentration of ethylene in the atmosphere around produce in postharvest situations to allow a reduced reliance on refrigeration and thus reduce energy consumption. Methods for managing ethylene levels around produce, and barriers that need to be overcome in order to move from a temperature-based mindset are discussed.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know