Overcoming the Dilemma between Low Electrical Resistance and High Corrosion Resistance Using a Ta/(Ta,Ti)N/TiN/Ti Multilayer for Proton Exchange Membrane Fuel Cells
Coatings, ISSN: 2079-6412, Vol: 12, Issue: 5
2022
- 9Citations
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Bipolar plates in proton exchange membrane fuel cells (PEMFCs) are confronted by the dilemma of low contact resistance and high corrosion resistance; this study aimed to simultaneously satisfy these dimensions in a harsh environment. Using thick multilayer coatings can improve the corrosion resistance, but the contact resistance would be largely compromised. To address this challenge, we propose compatible tantalum/titanium-based coatings on 316L stainless steel (SS316L) as bipolar plates for PEMFCs. With the transition layer, the optimal TaN/(Ta,Ti)N/TiN/Ti coating exhibits an ultralow corrosion current density of 0.369 µA·cm (at +0.6 V vs. SCE) and a contact resistance of 6 mΩ cm at 138 N/cm after 5 h of potentiostatic polarization, both of which meet the standard of the U.S. Department of Energy. Electrochemical impedance spectroscopy (EIS) and an equivalent electrical circuit model further elucidated that TaN/(Ta,Ti)N/TiN/Ti coating significantly impedes the oxidation reaction and dissolution of metals and provides good protection for the SS316L.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know