Effect of Humidity on the Thermal Properties of Aluminum Nanopowders with Different Surface Coatings
Coatings, ISSN: 2079-6412, Vol: 12, Issue: 8
2022
- 3Citations
- 5Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent Blog
Coatings, Vol. 12, Pages 1147: Effect of Humidity on the Thermal Properties of Aluminum Nanopowders with Different Surface Coatings
Coatings, Vol. 12, Pages 1147: Effect of Humidity on the Thermal Properties of Aluminum Nanopowders with Different Surface Coatings Coatings doi: 10.3390/coatings12081147 Authors: Liangui Guo
Article Description
To investigate the effect of surface coating materials on the humidity stability of aluminum (Al) nanopowders, three kinds of core–shell structure Al nanopowders with an AlO passivation coating, carbon coating, and plasticizer dioctyl sebacate (DOS) coating were prepared through laser-induction complex heating method. After one year’s storage at 95% relative humidity, their thermal properties were tested through differential scanning calorimeter (DSC) and thermal gravimeter (TG) analysis. The results show that the thermal properties of AlO-passivated Al nanopowders are entirely lost under high humidity because the AlO passivation coating is very sensitive to moisture. The thermal properties of carbon-coated Al nanopowders are not well-protected under a high humidity due to the uneven thickness and structural defects of carbon coatings. However, the thermal enthalpy of DOS-coated Al nanopowders remains at 3.56 KJ/g under high humidity, which indicates that an organic DOS coating with a hydrophobic nature has an excellent protective effect on the thermal properties of the Al nanopowders. Given the good forming performance of organic DOS coatings and other components of propellants, DOS-coated Al nanopowders are a kind of energetic material with potential application value.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know