Well-Dispersed CoNiO Nanosheet/CoNi Nanocrystal Arrays Anchored onto Monolayer MXene for Superior Electromagnetic Absorption at Low Frequencies
Coatings, ISSN: 2079-6412, Vol: 14, Issue: 5
2024
- 2Citations
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations2
- Citation Indexes2
- Mentions1
- Blog Mentions1
- Blog1
Article Description
Developing microwave absorbers with superior low-frequency electromagnetic wave absorption properties is one of the foremost important factors driving the boom in 5G technology development. In this study, via a simple hydrothermal and pyrolysis strategy, randomly interleaved CoNiO nanosheets and uniformly ultrafine CoNi nanocrystals are anchored onto both sides of a single-layered MXene. The absorption mechanism demonstrated that the hierarchical heterostructure prevents the aggregation of MXene nanoflakes and magnetic crystallites. In addition, the introduction of the double-magnetic phase of CoNiO/CoNi arrays can not only enhance the magnetic loss capacity but also generate larger void spaces and abundant heterogeneous interfaces, collectively promoting impedance-matching and furthering microwave attenuation capabilities at a low frequency. Hence, the reflection loss of the optimal absorber (M–MCNO) is −45.33 dB at 3.24 GHz, which corresponds to a matching thickness of 5.0 mm. Moreover, its EAB can entirely cover the S-band and C-band by tailoring the matching thickness from 2 to 7 mm. Satellite radar cross-section (RCS) simulations demonstrated that the M–MCNO can reduce the RCS value to below −10 dB m over a multi-angle range. Thus, the proposed hybrid absorber is of great significance for the development of magnetized MXene composites with superior low-frequency microwave absorption properties.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know