Anti-fouling ceramic coating for improving the energy efficiency of steel boiler systems
Coatings, ISSN: 2079-6412, Vol: 8, Issue: 10
2018
- 11Citations
- 37Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Boilers are systems used mainly to generate steam in industries and waste-to-energy facilities. During operation, heat transfer loss occurs because a fouling layer with low thermal conductivity is deposited on the external surfaces of the boiler tube system, which contributes to the overall poor energy efficiency of waste-to-energy power plants. To overcome the fouling problem, a ceramic coating was developed and applied to carbon steel with a simple and inexpensive coating method. Anti-fouling testing, thermal conductivity measurement, and microstructure observation were performed to evaluate the performance of the coating. All evaluated properties of the coating were found to be excellent. The developed ceramic coating can be applied to boiler tubes in a real facility to protect them from the fouling problem and improve their energy efficiency.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know