Dominant strategies of quantum games on quantum periodic automata
Computation, ISSN: 2079-3197, Vol: 3, Issue: 4, Page: 586-599
2015
- 23Citations
- 9Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Game theory and its quantum extension apply in numerous fields that affect people's social, political, and economical life. Physical limits imposed by the current technology used in computing architectures (e.g., circuit size) give rise to the need for novel mechanisms, such as quantum inspired computation. Elements from quantum computation and mechanics combined with game-theoretic aspects of computing could open new pathways towards the future technological era. This paper associates dominant strategies of repeated quantum games with quantum automata that recognize infinite periodic inputs. As a reference, we used the PQ-PENNY quantum game where the quantum strategy outplays the choice of pure or mixed strategy with probability 1 and therefore the associated quantum automaton accepts with probability 1. We also propose a novel game played on the evolution of an automaton, where players' actions and strategies are also associated with periodic quantum automata.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know