Integrity and Privacy Assurance Framework for Remote Healthcare Monitoring Based on IoT
Computers, ISSN: 2073-431X, Vol: 13, Issue: 7
2024
- 3Citations
- 29Captures
- 2Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent Blog
Computers, Vol. 13, Pages 164: Integrity and Privacy Assurance Framework for Remote Healthcare Monitoring Based on IoT
Computers, Vol. 13, Pages 164: Integrity and Privacy Assurance Framework for Remote Healthcare Monitoring Based on IoT Computers doi: 10.3390/computers13070164 Authors: Salah Hamza Alharbi Ali
Most Recent News
Research from Islamic University of Madinah Provides New Data on Blockchain Technology (Integrity and Privacy Assurance Framework for Remote Healthcare Monitoring Based on IoT)
2024 JUL 23 (NewsRx) -- By a News Reporter-Staff News Editor at Health Policy and Law Daily -- A new study on blockchain technology is
Article Description
Remote healthcare monitoring (RHM) has become a pivotal component of modern healthcare, offering a crucial lifeline to numerous patients. Ensuring the integrity and privacy of the data generated and transmitted by IoT devices is of paramount importance. The integration of blockchain technology and smart contracts has emerged as a pioneering solution to fortify the security of internet of things (IoT) data transmissions within the realm of healthcare monitoring. In today’s healthcare landscape, the IoT plays a pivotal role in remotely monitoring and managing patients’ well-being. Furthermore, blockchain’s decentralized and immutable ledger ensures that all IoT data transactions are securely recorded, timestamped, and resistant to unauthorized modifications. This heightened level of data security is critical in healthcare, where the integrity and privacy of patient information are nonnegotiable. This research endeavors to harness the power of blockchain and smart contracts to establish a robust and tamper-proof framework for healthcare IoT data. Employing smart contracts, which are self-executing agreements programmed with predefined rules, enables us to automate and validate data transactions within the IoT ecosystem. These contracts execute automatically when specific conditions are met, eliminating the need for manual intervention and oversight. This automation not only streamlines the process of data processing but also enhances its accuracy and reliability by reducing the risk of human error. Additionally, smart contracts provide a transparent and tamper-proof mechanism for verifying the validity of transactions, thereby mitigating the risk of fraudulent activities. By leveraging smart contracts, organizations can ensure the integrity and efficiency of data transactions within the IoT ecosystem, leading to improved trust, transparency, and security. Our experiments demonstrate the application of a blockchain approach to secure transmissions in IoT for RHM, as will be illustrated in the paper. This showcases the practical applicability of blockchain technology in real-world scenarios.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know