Transfer of Periodic Phenomena in Multiphase Capillary Flows to a Quasi-Stationary Observation Using U-Net
Computers, ISSN: 2073-431X, Vol: 13, Issue: 9
2024
- 1Citations
- 5Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Technical University Dortmund (TU Dortmund) Researcher Yields New Findings on Computer Science (Transfer of Periodic Phenomena in Multiphase Capillary Flows to a Quasi-Stationary Observation Using U-Net)
2024 SEP 27 (NewsRx) -- By a News Reporter-Staff News Editor at Computer News Today -- Data detailed on computer science have been presented. According
Article Description
Miniaturization promotes the efficiency and exploration domain in scientific fields such as computer science, engineering, medicine, and biotechnology. In particular, the field of microfluidics is a flourishing technology, which deals with the manipulation of small volumes of liquid. Dispersed droplets or bubbles in a second immiscible liquid are of great interest for screening applications or chemical and biochemical reactions. However, since very small dimensions are characterized by phenomena that differ from those at macroscopic scales, a deep understanding of physics is crucial for effective device design. Due to small volumes in miniaturized systems, common measurement techniques are not applicable as they exceed the dimensions of the device by a multitude. Hence, image analysis is commonly chosen as a method to understand ongoing phenomena. Artificial Intelligence is now the state of the art for recognizing patterns in images or analyzing datasets that are too large for humans to handle. X-ray-based Computer Tomography adds a third dimension to images, which results in more information, but ultimately, also in more complex image analysis. In this work, we present the application of the U-Net neural network to extract certain states during droplet formation in a capillary, which forms a constantly repeated process that is captured on tens of thousands of CT images. The experimental setup features a co-flow setup that is based on 3D-printed capillaries with two different cross-sections with an inner diameter, respectively edge length of 1.6 mm. For droplet formation, water was dispersed in silicon oil. The classification into different droplet states allows for 3D reconstruction and a time-resolved 3D analysis of the present phenomena. The original U-Net was modified to process input images of a size of 688 × 432 pixels while the structure of the encoder and decoder path feature 23 convolutional layers. The U-Net consists of four max pooling layers and four upsampling layers. The training was performed on 90% and validated on 10% of a dataset containing 492 images showing different states of droplet formation. A mean Intersection over Union of 0.732 was achieved for a training of 50 epochs, which is considered a good performance. The presented U-Net needs 120 ms per image to process 60,000 images to categorize emerging droplets into 24 states at 905 angles. Once the model is trained sufficiently, it provides accurate segmentation for various flow conditions. The selected images are used for 3D reconstruction enabling the 2D and 3D quantification of emerging droplets in capillaries that feature circular and square cross-sections. By applying this method, a temporal resolution of 25–40 ms was achieved. Droplets that are emerging in capillaries with a square cross-section become bigger under the same flow conditions in comparison to capillaries with a circular cross section. The presented methodology is promising for other periodic phenomena in different scientific disciplines that focus on imaging techniques.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know