Divisions and Square Roots with Tight Error Analysis from Newton–Raphson Iteration in Secure Fixed-Point Arithmetic
Cryptography, ISSN: 2410-387X, Vol: 7, Issue: 3
2023
- 1Citations
- 2Captures
- 2Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Study Findings on Cryptography Discussed by Researchers at Eindhoven University of Technology (Divisions and Square Roots with Tight Error Analysis from Newton-Raphson Iteration in Secure Fixed-Point Arithmetic)
2023 OCT 06 (NewsRx) -- By a News Reporter-Staff News Editor at NewsRx Science Daily -- Current study results on cryptography have been published. According
Article Description
In this paper, we present new variants of Newton–Raphson-based protocols for the secure computation of the reciprocal and the (reciprocal) square root. The protocols rely on secure fixed-point arithmetic with arbitrary precision parameterized by the total bit length of the fixed-point numbers and the bit length of the fractional part. We perform a rigorous error analysis aiming for tight accuracy claims while minimizing the overall cost of the protocols. Due to the nature of secure fixed-point arithmetic, we perform the analysis in terms of absolute errors. Whenever possible, we allow for stochastic (or probabilistic) rounding as an efficient alternative to deterministic rounding. We also present a new protocol for secure integer division based on our protocol for secure fixed-point reciprocals. The resulting protocol is parameterized by the bit length of the inputs and yields exact results for the integral quotient and remainder. The protocol is very efficient, minimizing the number of secure comparisons. Similarly, we present a new protocol for integer square roots based on our protocol for secure fixed-point square roots. The quadratic convergence of the Newton–Raphson method implies a logarithmic number of iterations as a function of the required precision (independent of the input value). The standard error analysis of the Newton–Raphson method focuses on the termination condition for attaining the required precision, assuming sufficiently precise floating-point arithmetic. We perform an intricate error analysis assuming fixed-point arithmetic of minimal precision throughout and minimizing the number of iterations in the worst case.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know