Alkaline activation of kaolin group minerals
Crystals, ISSN: 2073-4352, Vol: 10, Issue: 4
2020
- 24Citations
- 56Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Zeolites can be obtained in the process of the alkali-activation of aluminosilicate precursors. Such zeolite–geopolymer hybrid bulk materials merge the advantageous properties of both zeolites and geopolymers. In the present study, the effect of the type and concentration of an activator on the structure and properties of alkali-activated metakaolin, and metahalloysite was assessed. These two different kaolinite clays were obtained by the calcination of kaolin and halloysite, and then activated with sodium hydroxide and water glass. The phase compositions were assessed by X-ray diffraction, the microstructure was observed via scanning electron microscope, and the structural studies were conducted on the basis of the infrared spectra. The structure and properties of the obtained alkali-activated materials depend on both the type of a precursor and the type of an activator. The formation of zeolite phases was observed when the activation was carried out with sodium hydroxide alone, or with a small addition of water glass, regardless of the starting material used. The higher proportion of silicon in the activator solution does not give crystalline phases, but only an amorphous phase. Geopolymers based on metahalloysite have better compressive strength as the result of the better reactivity of metahalloysite compared to metakaolin.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know