A literature review on high-performance photocatalysts for sustainable cancer therapy
Crystals, ISSN: 2073-4352, Vol: 11, Issue: 10
2021
- 8Citations
- 8Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Since cancer is a serious threat to public health worldwide, the development of novel methods and materials for treating cancer rapidly and thoroughly is of great significance. This review summarizes the mechanism and application of photocatalytic materials used to kill cancer cells. The photosensitivity and toxicological properties of several common photcatalysts used in anti-cancer treatment are discussed in detail. The ideal photocatalyst must possess the following characteristics: a highly stable production of active oxygen species and high selectivity to cancer cells without causing any damage to healthy tissues. This work concluded the existing photocatalytic materials used to treat cancer, as well as the current challenges in the application of cancer therapy. We aim to provide a basis for the development of new photocatalytic anti-cancer materials with high stability and selectivity while maintaining high photodynamic reaction performance.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know