Super Bonding Strength of AlO Nanoparticles Reinforced Sn Interlayer Steel/Aluminum Bimetal Casting
Crystals, ISSN: 2073-4352, Vol: 12, Issue: 3
2022
- 5Citations
- 8Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
For specialized applications, it is incumbent to develop new materials that enable manufacturers to develop new processes and designs. For better fuel economy, structural integrity, and lightweight applications, the development of bimetallic steel/aluminum (Al) alloys having a strong interfacial bond is required. Therefore, a mild steel/Al-bearing alloy bimetallic composite was investigated in this study. Firstly, a tin (Sn) interlayer was developed between the steel substrate and the Al-bearing alloy by the tinning process. For further improvement in the interfacial integrity, alumina (AlO ) nanoparticles were added to the Sn powder during the tinning process. Four different wt.% of AlO nanoparticles of 0.25, 0.5, 1, and 1.5 were added and mixed thoroughly with Sn powder before mixing them with flux prior to the tinning process. Finally, molten Al-bearing alloy (Al–Sn-Si–Cu) was poured over the AlO nanoparticles reinforced tinned steel substrate. A cross-section of the steel/Al-bearing alloy bimetallic composite was prepared for optical microscopy (OM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and shear testing. The cross-section microstructure of the steel/Al-bearing alloy bimetallic composite revealed irregular and discontinuous interfacial layers in the case of the low-temperature (170C) tinning process. However, a uniform, continuous interfacial layer was fabricated during the tinning process when additional preheat to the steel substrate and tinning process was adopted. It can be reported that low AlO nanoparticles loading (0.25%) and steel substrate preheating were recommended for the better interfacial layer in the steel/Al-bearing alloy bimetallic composite.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know