Full-Body Mobility Data to Validate Inertial Measurement Unit Algorithms in Healthy and Neurological Cohorts
Data, ISSN: 2306-5729, Vol: 7, Issue: 10
2022
- 13Citations
- 25Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Gait and balance dysfunctions are common in neurological disorders and have a negative effect on quality of life. Regularly quantifying these mobility limitations can be used to measure disease progression and the effect of treatment. This information can be used to provide a more individualized treatment. Inertial measurement units (IMUs) can be utilized to quantify mobility in different contexts. However, algorithms are required to extract valuable parameters out of the raw IMU data. These algorithms need to be validated to make sure that they extract the features they should extract. This validation should be performed per disease since different mobility limitations or symptoms can influence the performance of an algorithm in different ways. Therefore, this dataset contains data from both healthy subjects and patients with neurological diseases (Parkinson’s disease, stroke, multiple sclerosis, chronic low back pain). The full bodies of 167 subjects were measured with IMUs and an optical motion capture (reference) system. Subjects performed multiple standardized mobility assessments and non-standardized activities of daily living. The data of 21 healthy subjects are shared online, data of the other subjects and patients can only be obtained after contacting the corresponding author and signing a data sharing agreement. Dataset:https://doi.org/10.6084/m9.figshare.20238006. Dataset License: CC BY-NC-SA
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know