Classification of Cervical Spine Fracture and Dislocation Using Refined Pre-Trained Deep Model and Saliency Map
Diagnostics, ISSN: 2075-4418, Vol: 13, Issue: 7
2023
- 38Citations
- 27Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations38
- Citation Indexes38
- 38
- Captures27
- Readers27
- 27
- Mentions1
- News Mentions1
- 1
Most Recent News
Findings from Zagazig University Advance Knowledge in Diagnostics (Classification of Cervical Spine Fracture and Dislocation Using Refined Pre-Trained Deep Model and Saliency Map)
2023 APR 19 (NewsRx) -- By a News Reporter-Staff News Editor at Health & Medicine Daily -- A new study on diagnostics is now available.
Article Description
Cervical spine (CS) fractures or dislocations are medical emergencies that may lead to more serious consequences, such as significant functional disability, permanent paralysis, or even death. Therefore, diagnosing CS injuries should be conducted urgently without any delay. This paper proposes an accurate computer-aided-diagnosis system based on deep learning (AlexNet and GoogleNet) for classifying CS injuries as fractures or dislocations. The proposed system aims to support physicians in diagnosing CS injuries, especially in emergency services. We trained the model on a dataset containing 2009 X-ray images (530 CS dislocation, 772 CS fractures, and 707 normal images). The results show 99.56%, 99.33%, 99.67%, and 99.33% for accuracy, sensitivity, specificity, and precision, respectively. Finally, the saliency map has been used to measure the spatial support of a specific class inside an image. This work targets both research and clinical purposes. The designed software could be installed on the imaging devices where the CS images are captured. Then, the captured CS image is used as an input image where the designed code makes a clinical decision in emergencies.
Bibliographic Details
MDPI AG
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know