A rapid UAV method for assessing body condition in fur seals
Drones, ISSN: 2504-446X, Vol: 3, Issue: 1, Page: 1-7
2019
- 34Citations
- 60Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Condition indices correlating body lipid content with mass and morphometric measurements have been developed for a variety of taxa. However, for many large species, the capture and handling of enough animals to obtain representative population estimates is not logistically feasible. The relatively low cost and reduced disturbance effects of UAVs make them ideal for the rapid acquisition of high volume data for monitoring large species. This study examined the imagery collected from two different UAVs, flown at 25 m altitude, and the subsequent georeferenced orthomosaics as a method for measuring length and axillary girth of Australian fur seals (Arctocephalus pusillus doriferus) to derive an index of body condition. Up to 26% of individuals were orientated correctly (prostrate/sternal recumbent) to allow for body measurements. The UAV-obtained images over-estimated axillary girth diameter due to postural sag on the lateral sides of the thorax while the animals are lying flat in the sternal recumbent position on granite rocks. However, the relationship between axillary girth and standard length was similarly positive for the remotely-and physically-obtained measurements. This indicates that residual values from the remotely-obtained measurements can be used as a relative index of body condition.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know