Detection of White Leaf Disease in Sugarcane Using Machine Learning Techniques over UAV Multispectral Images
Drones, ISSN: 2504-446X, Vol: 6, Issue: 9
2022
- 54Citations
- 90Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Sugarcane white leaf phytoplasma (white leaf disease) in sugarcane crops is caused by a phytoplasma transmitted by leafhopper vectors. White leaf disease (WLD) occurs predominantly in some Asian countries and is a devastating global threat to sugarcane industries, especially Sri Lanka. Therefore, a feasible and an effective approach to precisely monitoring WLD infection is important, especially at the early pre-visual stage. This work presents the first approach on the preliminary detection of sugarcane WLD by using high-resolution multispectral sensors mounted on small unmanned aerial vehicles (UAVs) and supervised machine learning classifiers. The detection pipeline discussed in this paper was validated in a sugarcane field located in Gal-Oya Plantation, Hingurana, Sri Lanka. The pixelwise segmented samples were classified as ground, shadow, healthy plant, early symptom, and severe symptom. Four ML algorithms, namely XGBoost (XGB), random forest (RF), decision tree (DT), and K-nearest neighbors (KNN), were implemented along with different python libraries, vegetation indices (VIs), and five spectral bands to detect the WLD in the sugarcane field. The accuracy rate of 94% was attained in the XGB, RF, and KNN to detect WLD in the field. The top three vegetation indices (VIs) for separating healthy and infected sugarcane crops are modified soil-adjusted vegetation index (MSAVI), normalized difference vegetation index (NDVI), and excess green (ExG) in XGB, RF, and DT, while the best spectral band is red in XGB and RF and green in DT. The results revealed that this technology provides a dependable, more direct, cost-effective, and quick method for detecting WLD.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know