Artemisia Frigida Distribution Mapping in Grassland with Unmanned Aerial Vehicle Imagery and Deep Learning
Drones, ISSN: 2504-446X, Vol: 8, Issue: 4
2024
- 3Captures
- 2Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures3
- Readers3
- Mentions2
- Blog Mentions1
- 1
- News Mentions1
- 1
Most Recent Blog
Drones, Vol. 8, Pages 151: Artemisia Frigida Distribution Mapping in Grassland with Unmanned Aerial Vehicle Imagery and Deep Learning
Drones, Vol. 8, Pages 151: Artemisia Frigida Distribution Mapping in Grassland with Unmanned Aerial Vehicle Imagery and Deep Learning Drones doi: 10.3390/drones8040151 Authors: Yongcai Wang
Most Recent News
Capital Normal University Researchers Target Unmanned Aerial Vehicle (Artemisia Frigida Distribution Mapping in Grassland with Unmanned Aerial Vehicle Imagery and Deep Learning)
2024 MAY 13 (NewsRx) -- By a News Reporter-Staff News Editor at Defense & Aerospace Daily -- Researchers detail new data in unmanned aerial vehicle.
Article Description
Artemisia frigida, as an important indicator species of grassland degradation, holds significant guidance significance for understanding grassland degradation status and conducting grassland restoration. Therefore, conducting rapid surveys and monitoring it is crucial. In this study, to address the issue of insufficient identification accuracy due to the large density and small size of Artemisia frigida in UAV images, we improved the YOLOv7 object detection algorithm to enhance the performance of the YOLOv7 model in Artemisia frigida detection. We applied the improved model to the detection of Artemisia frigida across the entire experimental area, achieving spatial mapping of Artemisia frigida distribution. The results indicate: In comparison across different models, the improved YOLOv7 + Biformer + wise-iou model exhibited the most notable enhancement in precision metrics compared to the original YOLOv7, showing a 6% increase. The mean average precision at intersection over union (IoU) threshold of 0.5 (mAP@.5) also increased by 3%. In terms of inference speed, it ranked second among the four models, only trailing behind YOLOv7 + biformer. The YOLOv7 + biformer + wise-iou model achieved an overall detection precision of 96% and a recall of 94% across 10 plots. The model demonstrated superior overall detection performance. The enhanced YOLOv7 exhibited superior performance in Artemisia frigida detection, meeting the need for rapid mapping of Artemisia frigida distribution based on UAV images. This improvement is expected to contribute to enhancing the efficiency of UAV-based surveys and monitoring of grassland degradation. These findings emphasize the effectiveness of the improved YOLOv7 + Biformer + wise-iou model in enhancing precision metrics, overall detection performance, and its applicability to efficiently map the distribution of Artemisia frigida in UAV imagery for grassland degradation surveys and monitoring.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know