Computer model of synapse loss during an alzheimer's disease-like pathology in hippocampal subregions DG, CA3 and CA1-The way to chaos and information transfer
Entropy, ISSN: 1099-4300, Vol: 21, Issue: 4
2019
- 17Citations
- 17Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations17
- Citation Indexes17
- CrossRef17
- 17
- Captures17
- Readers17
- 17
- Mentions1
- News Mentions1
- 1
Most Recent News
Computer Model of Synapse Loss During an Alzheimer's Disease-Like Pathology in Hippocampal Subregions DG, CA3 and CA1-The Way to Chaos and Information Transfer.
Entropy (Basel). 2019 Apr 17;21(4) Authors: Świetlik D, Białowąs J, Moryś J, Kusiak A PubMed: 33267122 Submit Comment
Article Description
The aim of the study was to compare the computer model of synaptic breakdown in an Alzheimer's disease-like pathology in the dentate gyrus (DG), CA3 and CA1 regions of the hippocampus with a control model using neuronal parameters and methods describing the complexity of the system, such as the correlative dimension, Shannon entropy and positive maximal Lyapunov exponent. The model of synaptic breakdown (from 13% to 50%) in the hippocampus modeling the dynamics of an Alzheimer's disease-like pathology was simulated. Modeling consisted in turning off one after the other EC2 connections and connections from the dentate gyrus on the CA3 pyramidal neurons. The pathological model of synaptic disintegration was compared to a control. The larger synaptic breakdown was associated with a statistically significant decrease in the number of spikes (R = -0.79, P < 0.001), spikes per burst (R = -0.76, P < 0.001) and burst duration (R = -0.83, P < 0.001) and an increase in the inter-burst interval (R = 0.85, P < 0.001) in DG-CA3-CA1. The positive maximal Lyapunov exponent in the control model was negative, but in the pathological model had a positive value of DG-CA3-CA1. A statistically significant decrease of Shannon entropy with the direction of information flow DG- > CA3- > CA1 (R = -0.79, P < 0.001) in the pathological model and a statistically significant increase with greater synaptic breakdown (R = 0.24, P < 0.05) of the CA3-CA1 region was obtained. The reduction of entropy transfer for DG- > CA3 at the level of synaptic breakdown of 35% was 35%, compared with the control. Entropy transfer for CA3- > CA1 at the level of synaptic breakdown of 35% increased to 95% relative to the control. The synaptic breakdown model in an Alzheimer's disease-like pathology in DG-CA3-CA1 exhibits chaotic features as opposed to the control. Synaptic breakdown in which an increase of Shannon entropy is observed indicates an irreversible process of Alzheimer's disease. The increase in synapse loss resulted in decreased information flow and entropy transfer in DG- > CA3, and at the same time a strong increase in CA3- > CA1.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know