Identify risk pattern of e-bike riders in China based on machine learning framework
Entropy, ISSN: 1099-4300, Vol: 21, Issue: 11
2019
- 7Citations
- 26Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this paper, the risk pattern of e-bike riders in China was examined, based on treestructured machine learning techniques. Three-year crash/violation data were acquired from the Kunshan traffic police department, China. Firstly, high-risk (HR) electric bicycle (e-bike) riders were defined as those with at-fault crash involvement, while others (i.e. non-at-fault or without crash involvement) were considered as non-high-risk (NHR) riders, based on quasi-induced exposure theory. Then, for e-bike riders, their demographics and previous violation-related features were developed based on the crash/violation records. After that, a systematic machine learning (ML) framework was proposed so as to capture the complex risk patterns of those e-bike riders. An ensemble sampling method was selected to deal with the imbalanced datasets. Four tree-structured machine learning methods were compared, and a gradient boost decision tree (GBDT) appeared to be the best. The feature importance and partial dependence were further examined. Interesting findings include the following: (1) tree-structured ML models are able to capture complex risk patterns and interpret them properly; (2) spatial-temporal violation features were found as important indicators of high-risk e-bike riders; and (3) violation behavior features appeared to be more effective than violation punishment-related features, in terms of identifying high-risk e-bike riders. In general, the proposed ML framework is able to identify the complex crash risk pattern of e-bike riders. This paper provides useful insights for policy-makers and traffic practitioners regarding e-bike safety improvement in China.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know