A-DVM: A self-adaptive variable matrix decision variable selection scheme for multimodal problems
Entropy, ISSN: 1099-4300, Vol: 22, Issue: 9
2020
- 1Citations
- 7Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Artificial Bee Colony (ABC) is a Swarm Intelligence optimization algorithm well known for its versatility. The selection of decision variables to update is purely stochastic, incurring several issues to the local search capability of the ABC. To address these issues, a self-adaptive decision variable selection mechanism is proposed with the goal of balancing the degree of exploration and exploitation throughout the execution of the algorithm. This selection, named Adaptive Decision Variable Matrix (A-DVM), represents both stochastic and deterministic parameter selection in a binary matrix and regulates the extent of how much each selection is employed based on the estimation of the sparsity of the solutions in the search space. The influence of the proposed approach to performance and robustness of the original algorithm is validated by experimenting on 15 highly multimodal benchmark optimization problems. Numerical comparison on those problems is made against the ABC and their variants and prominent population-based algorithms (e.g., Particle Swarm Optimization and Differential Evolution). Results show an improvement in the performance of the algorithms with the A-DVM in the most challenging instances.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know