Unsupervised Embedding Learning for Large-Scale Heterogeneous Networks Based on Metapath Graph Sampling
Entropy, ISSN: 1099-4300, Vol: 25, Issue: 2
2023
- 6Citations
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
How to learn the embedding vectors of nodes in unsupervised large-scale heterogeneous networks is a key problem in heterogeneous network embedding research. This paper proposes an unsupervised embedding learning model, named LHGI (Large-scale Heterogeneous Graph Infomax). LHGI adopts the subgraph sampling technology under the guidance of metapaths, which can compress the network and retain the semantic information in the network as much as possible. At the same time, LHGI adopts the idea of contrastive learning, and takes the mutual information between normal/negative node vectors and the global graph vector as the objective function to guide the learning process. By maximizing the mutual information, LHGI solves the problem of how to train the network without supervised information. The experimental results show that, compared with the baseline models, the LHGI model shows a better feature extraction capability both in medium-scale unsupervised heterogeneous networks and in large-scale unsupervised heterogeneous networks. The node vectors generated by the LHGI model achieve better performance in the downstream mining tasks.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know