Density-Based Entropy Centrality for Community Detection in Complex Networks
Entropy, ISSN: 1099-4300, Vol: 25, Issue: 8
2023
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Article Description
One of the most important problems in complex networks is the location of nodes that are essential or play a main role in the network. Nodes with main local roles are the centers of real communities. Communities are sets of nodes of complex networks and are densely connected internally. Choosing the right nodes as seeds of the communities is crucial in determining real communities. We propose a new centrality measure named density-based entropy centrality for the local identification of the most important nodes. It measures the entropy of the sum of the sizes of the maximal cliques to which each node and its neighbor nodes belong. The proposed centrality is a local measure for explaining the local influence of each node, which provides an efficient way to locally identify the most important nodes and for community detection because communities are local structures. It can be computed independently for individual vertices, for large networks, and for not well-specified networks. The use of the proposed density-based entropy centrality for community seed selection and community detection outperforms other centrality measures.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know