Magnetic Black Hole Thermodynamics in an Extended Phase Space with Nonlinear Electrodynamics
Entropy, ISSN: 1099-4300, Vol: 26, Issue: 3
2024
- 1Citations
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations1
- Citation Indexes1
Article Description
We study Einstein’s gravity coupled to nonlinear electrodynamics with two parameters in anti-de Sitter spacetime. Magnetically charged black holes in an extended phase space are investigated. We obtain the mass and metric functions and the asymptotic and corrections to the Reissner–Nordström metric function when the cosmological constant vanishes. The first law of black hole thermodynamics in an extended phase space is formulated and the magnetic potential and the thermodynamic conjugate to the coupling are obtained. We prove the generalized Smarr relation. The heat capacity and the Gibbs free energy are computed and the phase transitions are studied. It is shown that the electric fields of charged objects at the origin and the electrostatic self-energy are finite within the nonlinear electrodynamics proposed.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know