PlumX Metrics
Embed PlumX Metrics

Effects of Landscape Heterogeneity and Disperser Movement on Seed Dispersal

Ecologies, ISSN: 2673-4133, Vol: 5, Issue: 2, Page: 198-217
2024
  • 0
    Citations
  • 0
    Usage
  • 5
    Captures
  • 2
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Captures
    5
  • Mentions
    2
    • Blog Mentions
      1
      • Blog
        1
    • News Mentions
      1
      • News
        1

Most Recent Blog

Ecologies, Vol. 5, Pages 198-217: Effects of Landscape Heterogeneity and Disperser Movement on Seed Dispersal

Ecologies, Vol. 5, Pages 198-217: Effects of Landscape Heterogeneity and Disperser Movement on Seed Dispersal Ecologies doi: 10.3390/ecologies5020013 Authors: Michael G. Just Wade A. Wall

Most Recent News

New Ecology Study Results from U.S. Army Corps of Engineers Described (Effects of Landscape Heterogeneity and Disperser Movement on Seed Dispersal)

2024 MAY 01 (NewsRx) -- By a News Reporter-Staff News Editor at Ecology Daily News -- Research findings on ecology are discussed in a new

Article Description

The primacy of endozoochory for the maintenance and expansion of many woody plant populations is well known, but seed dispersal is not well understood for most species. This is especially true for rare species, where small population size and low fruit production can limit field- or observation-based experiments. Additionally, the effect of environmental heterogeneity on disperser movement is rarely investigated but has been shown to improve estimates of plant population spatial patterns and dynamics. We used simulation experiments to explore the effects of environmental heterogeneity and disperser movement on Lindera subcoriacea seed dispersal, a rare shrub from the southeastern United States with avian-dispersed seeds. Our experiments incorporated environmental heterogeneity and simulated disperser movement for five bird species, based on either landscape permeability or straight path rules. We anticipated that permeability-based movement would result in greater dispersal distances and seed dispersal effectiveness, which characterizes both quantity and quality. Generally, we did not find differences in seed dispersal between permeability and straight path experiments. However, we did find that permeability-based experiments had greater deposition into suitable habitat during flight (23 vs. 1%). These rare but longer distance depositions may be especially important for plants that are influenced by gap or interpopulation dynamics. We also found consistently greater dispersal into high quality habitats regardless of disperser species in permeability experiments, implying that incorporating species-specific assessments of landscape utilization (occupancy) could influence the effectiveness of seed dispersal. Our study suggests that including environmental heterogeneity in seed dispersal models can provide additional insights not provided by avian parameters (e.g., gut capacity, seed retention time, and flight speed) commonly used to inform dispersal models.

Bibliographic Details

Michael G. Just; Wade A. Wall; Matthew G. Hohmann; Stacy D. Huskins

MDPI AG

Agricultural and Biological Sciences; Biochemistry, Genetics and Molecular Biology; Environmental Science

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know