Fe-Modified TiO Nanotube Layer as a Photochemically Versatile Material for the Degradation of Organic Pollutants in Water †
Engineering Proceedings, ISSN: 2673-4591, Vol: 19, Issue: 1
2022
- 1Citations
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
TiO nanotube layers (TNT) are prepared by electrochemical anodization of Ti foil in an electrolyte composed of ethylene glycol, ammonium fluoride, and water. The surface of TNT is modified by iron using spin-coating of Fe(NO)/IPA (isopropyl alcohol) solution of different concentrations (10 µM−100 mM). The as-prepared materials are annealed at 450 °C for 2 h to form crystalline Fe-TNT. The phase identification and surface morphology of the materials are investigated by XRD and SEM/EDX, respectively. The novelty of this work is based on the investigation of different photochemical processes that could occur simultaneously, and it includes mainly photocatalysis and Fenton-based processes since iron is a Fenton-active element and TiO is a photocatalyst. To this end, the degradation of caffeine, an organic pollutant, is performed under solar-like radiation at pH = 3 using different systems that are: (i) Fe-TNT material alone; (ii) a radical precursor alone (HO = 1 mM); and (iii) Fe-TNT combined with HO. It is worth noting the degradation mechanism of the organic pollutants occurs via advanced oxidation processes where hydroxyl radicals have been identified as the main reactive oxygen species. One of the main goals of this work is to determine the contribution of the different involved photochemical processes (photocatalysis, photo-Fenton, and photolysis) along with the potential synergy between all these processes. To resume, this work provides new insights into the concept of photochemical versatility (using Fe-TNT), which is scarcely described in the literature.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know