Modelling of Irreversible Homogeneous Reaction on Finite Diffusion Layers
Electrochem, ISSN: 2673-3293, Vol: 3, Issue: 3, Page: 479-491
2022
- 4Citations
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The mathematical model proposed by Chapman and Antano (Electrochimica Acta, 56 (2010), 128–132) for the catalytic electrochemical–chemical (EC’) processes in an irreversible second-order homogeneous reaction in a microelectrode is discussed. The mass-transfer boundary layer neighbouring an electrode can contribute to the electrode’s measured AC impedance. This model can be used to analyse membrane-transport studies and other instances of ionic transport in semiconductors and other materials. Two efficient and easily accessible analytical techniques, AGM and DTM, were used to solve the steady-state non-linear diffusion equation’s infinite layers. Herein, we present the generalized approximate analytical solution for the solute, product, and reactant concentrations and current for the small experimental values of kinetic and diffusion parameters. Using the Matlab/Scilab program, we also derive the numerical solution to this problem. The comparison of the analytical and numerical/computational results reveals a satisfactory level of agreement.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know