Bidimensional and Tridimensional Poincaré Maps in Cardiology: A Multiclass Machine Learning Study
Electronics (Switzerland), ISSN: 2079-9292, Vol: 11, Issue: 3
2022
- 18Citations
- 13Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Heart rate is a nonstationary signal and its variation may contain indicators of current disease or warnings about impending cardiac diseases. Hence, heart rate variation analysis has become a noninvasive tool to further study the activities of the autonomic nervous system. In this scenario, the Poincaré plot analysis has proven to be a valuable tool to support cardiac diseases diagnosis. The study’s aim is a preliminary exploration of the feasibility of machine learning to classify subjects belonging to five cardiac states (healthy, hypertension, myocardial infarction, congestive heart failure and heart transplanted) using ten unconventional quantitative parameters extracted from bidimensional and three-dimensional Poincaré maps. Knime Analytic Platform was used to implement several machine learning algorithms: Gradient Boosting, Adaptive Boosting, k-Nearest Neighbor and Naïve Bayes. Accuracy, sensitivity and specificity were computed to assess the performances of the predictive models using the leave-one-out cross-validation. The Synthetic Minority Oversampling technique was previously performed for data augmentation considering the small size of the dataset and the number of features. A feature importance, ranked on the basis of the Information Gain values, was computed. Preliminarily, a univariate statistical analysis was performed through one-way Kruskal Wallis plus post-hoc for all the features. Machine learning analysis achieved interesting results in terms of evaluation metrics, such as demonstrated by Adaptive Boosting and k-Nearest Neighbor (accuracies greater than 90%). Gradient Boosting and k-Nearest Neighbor reached even 100% score in sensitivity and specificity, respectively. The most important features according to information gain are in line with the results obtained from the statistical analysis confirming their predictive power. The study shows the proposed combination of unconventional features extracted from Poincaré maps and well-known machine learning algorithms represents a valuable approach to automatically classify patients with different cardiac diseases. Future investigations on enriched datasets will further confirm the potential application of this methodology in diagnostic.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know