Numerical Solutions of a Differential System Considering a Pure Hybrid Fuzzy Neutral Delay Theory
Electronics (Switzerland), ISSN: 2079-9292, Vol: 11, Issue: 9
2022
- 17Citations
- 2Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent Blog
Electronics, Vol. 11, Pages 1478: Numerical Solutions of a Differential System Considering a Pure Hybrid Fuzzy Neutral Delay Theory
Electronics, Vol. 11, Pages 1478: Numerical Solutions of a Differential System Considering a Pure Hybrid Fuzzy Neutral Delay Theory Electronics doi: 10.3390/electronics11091478 Authors: Prasantha Bharathi
Article Description
In this paper, we propose and derive a new system called pure hybrid fuzzy neutral delay differential equations. We apply the classical fourth-order Runge–Kutta method (RK-4) to solve the proposed system of ordinary differential equations. First, we define the RK-4 method for hybrid fuzzy neutral delay differential equations and then establish the efficiency of this method by utilizing it to solve a particular type of fuzzy neutral delay differential equation. We provide a numerical example to verify the theoretical results. In addition, we compare the RK-4 and Euler solutions with the exact solutions. An error analysis is conducted to assess how much deviation from exactness is found in the two numerical methods. We arrive at the same conclusion for our hybrid fuzzy neutral delay differential system since the RK-4 method outperforms the classical Euler method.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know