Privacy-Enhanced Federated Learning: A Restrictively Self-Sampled and Data-Perturbed Local Differential Privacy Method
Electronics (Switzerland), ISSN: 2079-9292, Vol: 11, Issue: 23
2022
- 7Citations
- 3Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Researchers from Northeastern University Detail Findings in Electronics (Privacy-Enhanced Federated Learning: A Restrictively Self-Sampled and Data-Perturbed Local Differential Privacy Method)
2022 DEC 22 (NewsRx) -- By a News Reporter-Staff News Editor at Electronics Daily -- A new study on electronics is now available. According to
Article Description
As a popular distributed learning framework, federated learning (FL) enables clients to conduct cooperative training without sharing data, thus having higher security and enjoying benefits in processing large-scale, high-dimensional data. However, by sharing parameters in the federated learning process, the attacker can still obtain private information from the sensitive data of participants by reverse parsing. Local differential privacy (LDP) has recently worked well in preserving privacy for federated learning. However, it faces the inherent problem of balancing privacy, model performance, and algorithm efficiency. In this paper, we propose a novel privacy-enhanced federated learning framework (Optimal LDP-FL) which achieves local differential privacy protection by the client self-sampling and data perturbation mechanisms. We theoretically analyze the relationship between the model accuracy and client self-sampling probability. Restrictive client self-sampling technology is proposed which eliminates the randomness of the self-sampling probability settings in existing studies and improves the utilization of the federated system. A novel, efficiency-optimized LDP data perturbation mechanism (Adaptive-Harmony) is also proposed, which allows an adaptive parameter range to reduce variance and improve model accuracy. Comprehensive experiments on the MNIST and Fashion MNIST datasets show that the proposed method can significantly reduce computational and communication costs with the same level of privacy and model utility.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know