Residual Depth Feature-Extraction Network for Infrared Small-Target Detection
Electronics (Switzerland), ISSN: 2079-9292, Vol: 12, Issue: 12
2023
- 3Citations
- 3Captures
- 2Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
New Study Findings from Beijing Institute of Technology Illuminate Research in Electronics (Residual Depth Feature-Extraction Network for Infrared Small-Target Detection)
2023 JUN 26 (NewsRx) -- By a News Reporter-Staff News Editor at Electronics Daily -- Investigators publish new report on electronics. According to news originating
Article Description
Deep-learning methods have exhibited exceptional performance in numerous target-detection domains, and their application is steadily expanding to include infrared small-target detection as well. However, the effect of existing deep-learning methods is weakened due to the lack of texture information and the low signal-to-noise ratio of infrared small-target images. To detect small targets in infrared images with limited information, a depth feature-extraction network based on a residual module is proposed in this paper. First, a global attention guidance enhancement module (GAGEM) is used to enhance the original infrared small target image in a single frame, which considers the global and local features. Second, this paper proposes a depth feature-extraction module (DFEM) for depth feature extraction. Our IRST-Involution adds the attention mechanism to the classic Involution module and combines it with the residual module for the feature extraction of the backbone network. Finally, the feature pyramid with self-learning weight parameters is used for feature fusion. The comparative experiments on three public datasets demonstrate that our proposed infrared small-target detection algorithm exhibits higher detection accuracy and better robustness.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know