Lightweight Tunnel Defect Detection Algorithm Based on Knowledge Distillation
Electronics (Switzerland), ISSN: 2079-9292, Vol: 12, Issue: 15
2023
- 3Citations
- 4Captures
- 2Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent Blog
Electronics, Vol. 12, Pages 3222: Lightweight Tunnel Defect Detection Algorithm Based on Knowledge Distillation
Electronics, Vol. 12, Pages 3222: Lightweight Tunnel Defect Detection Algorithm Based on Knowledge Distillation Electronics doi: 10.3390/electronics12153222 Authors: Anfu Zhu Bin Wang Jiaxiao Xie Congxiao
Most Recent News
Findings from North China University of Water Resources and Electric Power Provide New Insights into Electronics (Lightweight Tunnel Defect Detection Algorithm Based on Knowledge Distillation)
2023 AUG 16 (NewsRx) -- By a News Reporter-Staff News Editor at Electronics Daily -- New study results on electronics have been published. According to
Article Description
One of the greatest engineering feats in history is the construction of tunnels, and the management of tunnel safety depends heavily on the detection of tunnel defects. However, the real-time, portability, and accuracy issues with the present tunnel defect detection technique still exist. The study improves the traditional defect detection technology based on the knowledge distillation algorithm, the depth pooling residual structure is designed in the teacher network to enhance the ability to extract target features. Next, the MobileNetv3 lightweight network is built into the student network to reduce the number and volume of model parameters. The lightweight model is then trained in terms of both features and outputs using a multidimensional knowledge distillation approach. By processing the tunnel radar detection photos, the dataset is created. The experimental findings demonstrate that the multidimensional knowledge distillation approach greatly increases the detection efficiency: the number of parameters is decreased by 81.4%, from 16.03 MB to 2.98 MB, while the accuracy is improved by 2.5%, from 83.4% to 85.9%.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know