Detection of Weak Fault Signals in Power Grids Based on Single-Trap Resonance and Dissipative Chaotic Systems
Electronics (Switzerland), ISSN: 2079-9292, Vol: 12, Issue: 18
2023
- 3Citations
- 1Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Reports Outline Electronics Study Results from Jilin University (Detection of Weak Fault Signals in Power Grids Based on Single-Trap Resonance and Dissipative Chaotic Systems)
2023 SEP 29 (NewsRx) -- By a News Reporter-Staff News Editor at Electronics Daily -- New research on electronics is the subject of a new
Article Description
Aiming to solve the problem that the performance of classical time–frequency domain signal detection methods is severely degraded in highly noisy environments, a single-trap approximate model of the stochastic resonance of bistable systems is studied in this paper. This method improves the defects of the classical bistable stochastic resonance model that cause it to be inapplicable during non-periodic signal detection. Combining this method with the particle swarm optimization algorithm based on an attenuation factor and cross-correlation detection technology, detection experiments determining the impulse voltage fluctuation signals, motor speed fluctuation signals and low-frequency oscillation signals of a power system are conducted. The results show that the single-trap resonance model has good phase matching performance and noise cancellation abilities. Furthermore, combining it with two kinds of dissipative chaotic systems, a comprehensive frequency and amplitude detection experiment was carried out for multiple harmonic aliasing signals. The results show that the single-trap resonance model can achieve error-free detection of each harmonic frequency and high-precision detection of each harmonic amplitude in highly noisy environments. The research results will provide new ideas for the detection of various types of weak fault signals in power systems.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know