PlumX Metrics
Embed PlumX Metrics

Optimizing Long Short-Term Memory Network for Air Pollution Prediction Using a Novel Binary Chimp Optimization Algorithm

Electronics (Switzerland), ISSN: 2079-9292, Vol: 12, Issue: 18
2023
  • 4
    Citations
  • 0
    Usage
  • 20
    Captures
  • 1
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    4
  • Captures
    20
  • Mentions
    1
    • News Mentions
      1
      • 1

Most Recent News

University of Houston Researcher Publishes Findings in Electronics (Optimizing Long Short-Term Memory Network for Air Pollution Prediction Using a Novel Binary Chimp Optimization Algorithm)

2023 OCT 06 (NewsRx) -- By a News Reporter-Staff News Editor at Ecology Daily News -- Current study results on electronics have been published. According

Article Description

Elevated levels of fine particulate matter (PM) in the atmosphere present substantial risks to human health and welfare. The accurate assessment of PM concentrations plays a pivotal role in facilitating prompt responses by pertinent regulatory bodies to mitigate air pollution. Additionally, it furnishes indispensable information for epidemiological studies concentrating on PM exposure. In recent years, predictive models based on deep learning (DL) have offered promise in improving the accuracy and efficiency of air quality forecasts when compared to other approaches. Long short-term memory (LSTM) networks have proven to be effective in time series forecasting tasks, including air pollution prediction. However, optimizing LSTM models for enhanced accuracy and efficiency remains an ongoing research area. In this paper, we propose a novel approach that integrates the novel binary chimp optimization algorithm (BChOA) with LSTM networks to optimize air pollution prediction models. The proposed BChOA, inspired by the social behavior of chimpanzees, provides a powerful optimization technique to fine-tune the LSTM architecture and optimize its parameters. The evaluation of the results is performed using cross-validation methods such as the coefficient of determination ((Formula presented.)), accuracy, the root mean square error (RMSE), and receiver operating characteristic (ROC) curve. Additionally, the performance of the BChOA-LSTM model is compared against eight DL architectures. Experimental evaluations using real-world air pollution data demonstrate the superior performance of the proposed BChOA-based LSTM model compared to traditional LSTM models and other optimization algorithms. The BChOA-LSTM model achieved the highest accuracy of 96.41% on the validation datasets, making it the most successful approach. The results show that the BChOA-LSTM architecture performs better than the other architectures in terms of the (Formula presented.) convergence curve, RMSE, and accuracy.

Bibliographic Details

Sahba Baniasadi; Sepehr Soltani; Reza Salehi; Diego Martín; Parmida Pourmand; Ehsan Ghafourian

MDPI AG

Engineering; Computer Science

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know