Multiple Moving Vehicles Tracking Algorithm with Attention Mechanism and Motion Model
Electronics (Switzerland), ISSN: 2079-9292, Vol: 13, Issue: 1
2024
- 5Citations
- 8Captures
- 2Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent Blog
Electronics, Vol. 13, Pages 242: Multiple Moving Vehicles Tracking Algorithm with Attention Mechanism and Motion Model
Electronics, Vol. 13, Pages 242: Multiple Moving Vehicles Tracking Algorithm with Attention Mechanism and Motion Model Electronics doi: 10.3390/electronics13010242 Authors: Jiajun Gao Guangjie Han Hongbo
Most Recent News
Findings from Fujian University of Technology in Electronics Reported (Multiple Moving Vehicles Tracking Algorithm with Attention Mechanism and Motion Model)
2024 JAN 18 (NewsRx) -- By a News Reporter-Staff News Editor at Electronics Daily -- Investigators publish new report on electronics. According to news reporting
Article Description
With the acceleration of urbanization and the increasing demand for travel, current road traffic is experiencing rapid growth and more complex spatio-temporal logic. Vehicle tracking on roads presents several challenges, including complex scenes with frequent foreground–background transitions, fast and nonlinear vehicle movements, and the presence of numerous unavoidable low-score detection boxes. In this paper, we propose AM-Vehicle-Track, following the proven-effective paradigm of tracking by detection (TBD). At the detection stage, we introduce the lightweight channel block attention mechanism (LCBAM), facilitating the detector to concentrate more on foreground features with limited computational resources. At the tracking stage, we innovatively propose the noise-adaptive extended Kalman filter (NSA-EKF) module to extract vehicles’ motion information while considering the impact of detection confidence on observation noise when dealing with nonlinear motion. Additionally, we borrow the Byte data association method to address unavoidable low-score detection boxes, enabling secondary association to reduce ID switches. We achieve 42.2 MOTA, 51.2 IDF1, and 364 IDs on the test set of VisDrone-MOT with 72 FPS. The experimental results showcase our approach’s highly competitive performance, attaining SOTA tracking performance with a fast speed.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know