Cooperative Coverage Path Planning for Multi-Mobile Robots Based on Improved K-Means Clustering and Deep Reinforcement Learning
Electronics (Switzerland), ISSN: 2079-9292, Vol: 13, Issue: 5
2024
- 4Citations
- 9Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
With the increasing complexity of patrol tasks, the use of deep reinforcement learning for collaborative coverage path planning (CPP) of multi-mobile robots has become a new hotspot. Taking into account the complexity of environmental factors and operational limitations, such as terrain obstacles and the scope of the task area, in order to complete the CPP task better, this paper proposes an improved K-Means clustering algorithm to divide the multi-robot task area. The improved K-Means clustering algorithm improves the selection of the first initial clustering point, which makes the clustering process more reasonable and helps to distribute tasks more evenly. Simultaneously, it introduces deep reinforcement learning with a dueling network structure to better deal with terrain obstacles and improves the reward function to guide the coverage process. The simulation experiments have confirmed the advantages of this method in terms of balanced task assignment, improvement in strategy quality, and enhancement of coverage efficiency. It can reduce path duplication and omission while ensuring coverage quality.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know