Optimizing Sensor Placement and Machine Learning Techniques for Accurate Hand Gesture Classification
Electronics (Switzerland), ISSN: 2079-9292, Vol: 13, Issue: 15
2024
- 2Citations
- 10Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent Blog
Electronics, Vol. 13, Pages 3072: Optimizing Sensor Placement and Machine Learning Techniques for Accurate Hand Gesture Classification
Electronics, Vol. 13, Pages 3072: Optimizing Sensor Placement and Machine Learning Techniques for Accurate Hand Gesture Classification Electronics doi: 10.3390/electronics13153072 Authors: Lakshya Chaplot Sara Houshmand
Article Description
Millions of individuals are living with upper extremity amputations, making them potential beneficiaries of hand and arm prostheses. While myoelectric prostheses have evolved to meet amputees’ needs, challenges remain related to their control. This research leverages surface electromyography sensors and machine learning techniques to classify five fundamental hand gestures. By utilizing features extracted from electromyography data, we employed a nonlinear, multiple-kernel learning-based support vector machine classifier for gesture recognition. Our dataset encompassed eight young nondisabled participants. Additionally, our study conducted a comparative analysis of five distinct sensor placement configurations. These configurations capture electromyography data associated with index finger and thumb movements, as well as index finger and ring finger movements. We also compared four different classifiers to determine the most capable one to classify hand gestures. The dual-sensor setup strategically placed to capture thumb and index finger movements was the most effective—this dual-sensor setup achieved 90% accuracy for classifying all five gestures using the support vector machine classifier. Furthermore, the application of multiple-kernel learning within the support vector machine classifier showcases its efficacy, achieving the highest classification accuracy amongst all classifiers. This study showcased the potential of surface electromyography sensors and machine learning in enhancing the control and functionality of myoelectric prostheses for individuals with upper extremity amputations.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know