A Novel Two-Channel Classification Approach Using Graph Attention Network with K-Nearest Neighbor
Electronics (Switzerland), ISSN: 2079-9292, Vol: 13, Issue: 20
2024
- 2Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Mentions2
- Blog Mentions1
- 1
- News Mentions1
- 1
Most Recent Blog
Electronics, Vol. 13, Pages 3985: A Novel Two-Channel Classification Approach Using Graph Attention Network with K-Nearest Neighbor
Electronics, Vol. 13, Pages 3985: A Novel Two-Channel Classification Approach Using Graph Attention Network with K-Nearest Neighbor Electronics doi: 10.3390/electronics13203985 Authors: Yang Wang Lifeng Yin
Most Recent News
Researcher at Dalian Jiaotong University Publishes New Study Findings on Electronics (A Novel Two-Channel Classification Approach Using Graph Attention Network with K-Nearest Neighbor)
2024 OCT 28 (NewsRx) -- By a News Reporter-Staff News Editor at Electronics Daily -- A new study on electronics is now available. According to
Article Description
Graph neural networks (GNNs) typically exhibit superior performance in shallow architectures. However, as the network depth increases, issues such as overfitting and oversmoothing of hidden vector representations arise, significantly diminishing model performance. To address these challenges, this paper proposes a Two-Channel Classification Algorithm Based on Graph Attention Network (TCC_GAT). Initially, nodes exhibiting similar interaction behaviors are identified through cosine similarity, thereby enhancing the foundational graph structure. Subsequently, an attention mechanism is employed to adaptively integrate neighborhood information within the enhanced graph structure, with a multi-head attention mechanism applied to mitigate overfitting. Furthermore, the K-nearest neighbors algorithm is adopted to reconstruct the basic graph structure, facilitating the learning of structural information and neighborhood features that are challenging to capture on interaction graphs. This approach addresses the difficulties associated with learning high-order neighborhood information. Finally, the embedding representations of identical nodes across different graph structures are fused to optimize model classification performance, significantly enhancing node embedding representations and effectively alleviating the over-smoothing issue. Semi-supervised experiments and ablation studies conducted on the Cora, Citeseer, and Pubmed datasets reveal an accuracy improvement ranging from 1.4% to 4.5% compared to existing node classification algorithms. The experimental outcomes demonstrate that the proposed TCC_GAT achieves superior classification results in node classification tasks.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know