A Convolutional Neural Network for the Removal of Simultaneous Ocular and Myogenic Artifacts from EEG Signals
Electronics (Switzerland), ISSN: 2079-9292, Vol: 13, Issue: 22
2024
- 1Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
- Mentions1
- Blog Mentions1
- Blog1
Most Recent Blog
Electronics, Vol. 13, Pages 4576: A Convolutional Neural Network for the Removal of Simultaneous Ocular and Myogenic Artifacts from EEG Signals
Electronics, Vol. 13, Pages 4576: A Convolutional Neural Network for the Removal of Simultaneous Ocular and Myogenic Artifacts from EEG Signals Electronics doi: 10.3390/electronics13224576 Authors:
Article Description
Electroencephalography (EEG) is a non-invasive technique widely used in neuroscience to diagnose neural disorders and analyse brain activity. However, ocular and myogenic artifacts from eye movements and facial muscle activity often contaminate EEG signals, compromising signal analysis accuracy. While deep learning models are a popular choice for denoising EEG signals, most focus on removing either ocular or myogenic artifacts independently. This paper introduces a novel EEG denoising model capable of handling the simultaneous occurrence of both artifacts. The model uses convolutional layers to extract spatial features and a fully connected layer to reconstruct clean signals from learned features. The model integrates the Adam optimiser, average pooling, and ReLU activation to effectively capture and restore clean EEG signals. It demonstrates superior performance, achieving low training and validation losses with a significantly reduced (Formula presented.) value of 0.35 in both the temporal and spectral domains. A high cross-correlation coefficient of 0.94 with ground-truth EEG signals confirms the model’s fidelity. Compared to the existing architectures and models (FPN, UNet, MCGUNet, LinkNet, MultiResUNet3+, Simple CNN, Complex CNN) across a range of signal-to-noise ratio values, the model shows superior performance for artifact removal. It also mitigates overfitting, underscoring its robustness in artifact suppression.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know