Evaluation of waste plastic oil-biodiesel blends as alternative fuels for diesel engines
Energies, ISSN: 1996-1073, Vol: 13, Issue: 11
2020
- 46Citations
- 84Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This study examined the use of waste plastic oil (WPO) combined with biodiesel as an alternative fuel for diesel engines, also commonly known as compression ignition engines, and focused on comparison of the basic physical and chemical properties of fuels, engine performance, combustion characteristics, and exhaust emissions. A preliminary study was conducted to determine the suitable ratio for the fuel blends in consideration of fuel lubricity and viscosity, and these results indicated that 10% biodiesel-derived from either palm oil or castor oil-in waste plastic oil was optimal. In addition, characterization of the basic properties of these fuel blends revealed that they had higher density and specific gravity and a lower flash point than diesel fuel, while the fuel heating value, viscosity, and cetane index were similar. The fuel blends, comprised of waste plastic oil with either 10% palm oil biodiesel (WPOP10) or 10% castor oil biodiesel (WPOC10), were selected for further investigation in engine tests in which diesel fuel and waste plastic oil were also included as baseline fuels. The experimental results of the performance of the engine showed that the combustion of WPO was similar to diesel fuel for all the tested engine loads and the addition of castor oil as compared to palm oil biodiesel caused a delay in the start of the combustion. Both biodiesel blends slightly improved brake thermal efficiency and smoke emissions with respect to diesel fuel. The addition of biodiesel to WPO tended to reduce the levels of hydrocarbon- and oxide-containing nitrogen emissions. One drawback of adding biodiesel to WPO was increased carbon monoxide and smoke. Comparing the two biodiesels used in the study, the presence of castor oil in waste plastic oil showed lower carbon monoxide and smoke emissions without penalty in terms of increased levels of hydrocarbon- and oxide-containing nitrogen emissions when the engine was operated at high load.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know