Quantifying the building energy dynamics of manhattan, new york city, using an urban building energy model and localized weather data
Energies, ISSN: 1996-1073, Vol: 13, Issue: 12
2020
- 10Citations
- 40Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Building sectors account for major energy use and greenhouse gas emissions in the US. While urban building energy-use modeling has been widely applied in many studies, limited studies have been conducted for Manhattan, New York City (NYC). Since the release of the new "80-by-50"law, the NYC government has committed to reducing carbon emissions by 80% by 2050; indeed, the government is facing a big challenge for reducing the energy use and carbon emissions. Therefore, understanding the building energy use of NYC with a high spatial and temporal resolution is essential for the government and local citizens in managing building energy use. This study quantified the building energy use of Manhattan in NYC with consideration of the local microclimate by integrating two popular modeling platforms, the Urban Weather Generator (UWG) and Urban Building Energy Modeling (UBEM). The research results suggest that (1) the largest building energy use is in central Manhattan, which is composed of large numbers of commercial buildings; (2) a similar seasonal electricity-use pattern and significantly different seasonal gas-use patterns could be found in Manhattan, NYC, due to the varied seasonal cooling and heating demand; and (3) the hourly energy-use profiles suggest only one electricity-use peak in the summer and two gas-use peaks in the winter.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know