Solving the optimal reactive power dispatch using marine predators algorithm considering the uncertainties in load and wind-solar generation systems
Energies, ISSN: 1996-1073, Vol: 13, Issue: 17
2020
- 84Citations
- 46Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The optimal reactive power dispatch (ORPD) problem is an important issue to assign the most efficient and secure operating point of the electrical system. The ORPD became a strenuous task, especially with the high penetration of renewable energy resources due to the intermittent and stochastic nature of wind speed and solar irradiance. In this paper, the ORPD is solved using a new natural inspired algorithm called the marine predators’ algorithm (MPA) considering the uncertainties of the load demand and the output powers of wind and solar generation systems. The scenario-based method is applied to handle the uncertainties of the system by generating deterministic scenarios from the probability density functions of the system parameters. The proposed algorithm is applied to solve the ORPD of the IEEE-30 bus system to minimize the power loss and the system voltage devotions. The result verifies that the proposed method is an efficient method for solving the ORPD compared with the state-of-the-art techniques.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know