Numerical investigation of performance and flow characteristics of a tunnel ventilation axial fan with thickness profile treatments of NACA airfoil
Energies, ISSN: 1996-1073, Vol: 13, Issue: 21
2020
- 6Citations
- 6Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
An axial flow fan, which is applied for ventilation in underground spaces such as tunnels, features a medium–large size, and most of the blades go through the casting process in consideration of mass production and cost. In the casting process, post-work related to roughness treatment is essential, and this is a final operation to determine the thickness profile of an airfoil which is designed from the empirical equation. In this study, the effect of the thickness profile of an airfoil on the performance and aerodynamic characteristics of the axial fan was examined through numerical analysis with the commercial code, ANSYS CFX. In order to conduct the sensitivity analysis on the effect of the maximum thickness position for each span on the performance at the design flow rate, the design of experiments (DOE) method was applied with a full factorial design as an additional attempt. The energy loss near the shroud span was confirmed with a quantified value for the tip leakage flow (TLF) rate through the tip clearance, and the trajectory of the TLF was observed on the two-dimensional (2D) coordinates system. The trajectory of the TLF matched well with the tendency of the calculated angle and correlated with the intensity of the turbulence kinetic energy (TKE) distribution. However, a correlation between the TLF rate and TKE could not be established. Meanwhile, the Q-criterion method was applied to specifically initiate the distribution of flow separation and inlet recirculation. The location accompanying the energy loss was mutually confirmed with the axial coordinates. Additionally, the nonuniform blade loading distribution, which was more severe as the maximum thickness position moved toward the leading edge (LE), could be improved significantly as the thickness near the trailing edge (TE) became thinner. The validation for the numerical analysis results was performed through a model-sized experimental test.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know