A novel sooty terns algorithm for deregulated MPC-LFC installed in multi-interconnected system with renewable energy plants
Energies, ISSN: 1996-1073, Vol: 14, Issue: 17
2021
- 9Citations
- 10Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This paper introduces a novel metaheuristic approach of sooty terns optimization algorithm (STOA) to determine the optimum parameters of model predictive control (MPC)-based deregulated load frequency control (LFC). The system structure consists of three interconnected plants with nonlinear multisources comprising wind turbine, photovoltaic model with maximum power point tracker, and superconducting magnetic energy storage under deregulated environment. The proposed objective function is the integral time absolute error (ITAE) of the deviations in frequencies and powers in tie-lines. The analysis aims at determining the optimum parameters of MPC via STOA such that ITAE is minimized. Moreover, the proposed STOA-MPC is examined under variation of the system parameters and random load disturbance. The time responses and performance specifications of the proposed STOA-MPC are compared to those obtained with MPC optimized via differential evolution, intelligent water drops algorithm, stain bower braid algorithm, and firefly algorithm. Furthermore, a practical case study of interconnected system comprising the Kuraymat solar thermal power station is analyzed based on actual recorded solar radiation. The obtained results via the proposed STOA-MPC-based deregulated LFC confirmed the competence and robustness of the designed controller compared to the other algorithms.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know