Technology for the recovery of lithium from geothermal brines
Energies, ISSN: 1996-1073, Vol: 14, Issue: 20
2021
- 149Citations
- 408Captures
- 7Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent Blog
From DOE’s Lawrence Berkeley National Laboratory (US) : "Sizing Up the Challenges in Extracting Lithium from Geothermal Brine"
From DOE’s Lawrence Berkeley National Laboratory (US) November 29, 2021 Julie Chao JHChao@lbl.gov (510) 486-6491 Berkeley Lab scientists assess the technology landscape for developing a
Most Recent News
Trends in Direct Lithium Extraction Technologies
Written by Bharat (Bob) Bhushan, Ph.D., and Purnima Singh, Ph.D., research scientists at Alpha Cleantech Labs Inc. Lithium is a light and highly reactive metal.
Review Description
Lithium is the principal component of high-energy-density batteries and is a critical material necessary for the economy and security of the United States. Brines from geothermal power production have been identified as a potential domestic source of lithium; however, lithium-rich geothermal brines are characterized by complex chemistry, high salinity, and high temperatures, which pose unique challenges for economic lithium extraction. The purpose of this paper is to examine and analyze direct lithium extraction technology in the context of developing sustainable lithium production from geothermal brines. In this paper, we are focused on the challenges of applying direct lithium extraction technology to geothermal brines; however, applications to other brines (such as coproduced brines from oil wells) are considered. The most technologically advanced approach for direct lithium extraction from geothermal brines is adsorption of lithium using inorganic sorbents. Other separation processes include extraction using solvents, sorption on organic resin and polymer materials, chemical precipitation, and membrane-dependent processes. The Salton Sea geothermal field in California has been identified as the most significant lithium brine resource in the US and past and present efforts to extract lithium and other minerals from Salton Sea brines were evaluated. Extraction of lithium with inorganic molecular sieve ion-exchange sorbents appears to offer the most immediate pathway for the development of economic lithium extraction and recovery from Salton Sea brines. Other promising technologies are still in early development, but may one day offer a second generation of methods for direct, selective lithium extraction. Initial studies have demonstrated that lithium extraction and recovery from geothermal brines are technically feasible, but challenges still remain in developing an economically and environmentally sustainable process at scale.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know