Design of Cement–Slag Concrete Composition for 3D Printing
Energies, ISSN: 1996-1073, Vol: 15, Issue: 13
2022
- 10Citations
- 24Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent Blog
Energies, Vol. 15, Pages 4610: Design of Cement–Slag Concrete Composition for 3D Printing
Energies, Vol. 15, Pages 4610: Design of Cement–Slag Concrete Composition for 3D Printing Energies doi: 10.3390/en15134610 Authors: Leonid Dvorkin Vitaliy Marchuk Izabela Hager Marcin Maroszek
Article Description
The article presents a set of experimental-static models of the properties of fine-grained concretes on a cement–slag binder and quartz sand with the addition of a hardening accelerator made on a 3D printer. The influence of the factors of the composition of the mixture and the effects of their interaction on the studied properties of concrete was established. By analyzing the models, the influence of the factors of mixture composition on the studied properties was ranked. The nature and degree of interrelation of individual properties of concrete are shown. A method for calculating the optimal compositions of concrete for a 3D printer, providing the specified properties at a minimum cost, is proposed.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know